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Abstract 

We derive an approximate probability distribution for the SNR (signal- 

to-noise ratio) of an improved adaptive detector in near rank-1 gaussian 

noise where the filter weights are computed using the principal eigenvectors 

of the estimated noise covariance matrix . The noise consists of two 

components, a strong rank-1-covariance interference component plus white 

noise. Computer simulation is used to verify the approximating SNR 

distribution and show that it is accurate even for small sample size and low 

interference-to-noise ratios (INR). 

We use this distribution to show the improvement possible when using 

filter weights based on just the principal eigenvectors rather than the full 

inverse of the estimated sample covariance matrix when the noise covariance 

is near rank 1 . For example we compare the expected value of SNR for our 

improved method and the conventional adaptive detector based on the inverse 

of the estimated covariance matrix. We find that for twenty-five samples of 

data and an INR value of 10 dB , the expected value of SNR for our new 

method is better than the comparison method. Other statistics can also be 

obtained from the probability density. 

The main advantage  of our principal-component method of  adaptive 



detection, in comparison with the method based on the inverse of an 

estimated covariance matrix, is that much less data is required to produce a 

given, needed level of SNR with high probability. 



CHAPTER ONE 

(A)  Introdnction 

(Al)  Detection with Known Covariance 

Let us consider the problem of detecting a signal in gaussian noise 

where both signal and noise are assumed to be real valued, the two 

hypotheses are 

H^:  X = n     (noise only) (1.00) 

E^:     X = n + s  (signal present) (1.01) 

where z is the vector of the observed data; n is a zero-mean gaussian 

T random vector with covariance matrix E(nn ) = N ; and  s  is the signal 

to be detected. The dimensions of x, n, and s are pxl. 

Under these conditions it can be shown that a likelihood ratio 

test statistic [4]  is 

z = i'^ N"^s (1.02) 

Equivalently, the test statistic z can be considered as the inner 

product of X and weight vector w. 

z = x'^w (1.03) 

where w = N~-^s. (1.04) 

Brooks and Reed [4] have shown that selecting a weight vector 

according to formula (1.04) is the same as maximizing the signal-to- 

noise ratio (SNR).  We can express this as maximizing the quadratic 

ratio 

T T 
Sm = -^L^^-^ (1.05) 

w Nw 

The weight vector that maximizes  this ratio (see [1,2,4]) is 

w = N ^s (1.06) 

The maximum SNR is 



^^ax = s% ^s (1.07) 

(A2)  Standard Adaptive Detection with Unknown Covariaace 

In practice we do not know the noise covariance matrix   and so it is 

usually estimated  froiB the data.  The maximuffl-likelihood estimate of 

the noise covariance matrix [71 is 

K 
~    1  V    T 
N = -=-    ) n.n/ (1.08) 

j=l 

where the observed noise vectors, n. ,are pxl vectors which are 

mutually independent and gaussian distributed with zero mean and 

covariance matrix N. Following standard methods one can obtain an 

estimate of the weight vector by inverting the sample covariance matrix 

[1,2,3] as follows: 

w = N"^s (1.09) 

To measure the effectiveness of this estimate of w [1], we can use a 

normalized SNR which is formed by (a) replacing w by w in formula 

(1.05) and (b) dividing by the maximum SNR value of formula (1.07) . 

The resulting normalized SNR is given by the formula 

^T T^ 

SNR =  * " " T -^  (^-^0^ 
(w Nw)(s N s) 

This ratio is always between zero and one 

0 < SNR < 1 

It is a random variable because the estimated weight vector w is a 

function of the observed data. Reed, Mallet,Brennan [1] have derived 

the distribution of the SNR for the above weight vector estimate based 

on the inversion of the sample covariance matrix.    The distribution 



is Beta with expected valne 

E(SNR) = ^ K ! 1 ^ ^^'^^^ 
where K is the number of vectors used to estimate the covariance matrix 

and p is the matrix order . 

From the expected valne of SNR formula (1.11), it is roughly seen 

that if the sample size K is small with respect to the matrix order, 

then the estimate of w is likely to be poor [3], since E(SNR) is small. 

(A3)  Improved Adaptive Detection for Unknown, but Approximatel3r~Low- 

Rank Covariance 

If N is approximately low rank, it can be shown theoretically 

through eigenvalue and eigenvector perturbation analysis ( Wilkinson 

[9] ) and experimentally [10] that the principal eigenvalues and 

eigenvectors of N are relatively stable, but the small, near zero 

eigenvalues and their corresponding eigenvectors fluctuate widely with 

perturbation. 

These results suggest that it should be possible to increase the 

probability of obtaining a high value of SNR by using estimates of w 

based on the principal eigenvectors of N . Let us look at w by 

decomposing it in terms of the eigenvectors of the underlying true 

covariance matrix, N . The eigen decomposition of N is N = V A V where 

V is the matrix of eigenvectors and A is the diagonal matrix of 

eigenvalues. The k'th eigenvector of N is denoted by v^ . 

Then the desired weight vector of (1.04) can be written as 



w = N~^s = -i- (s'^Vj)vj + -~-  (s^V2)v2 + . . + -^ (s^^v )v (1.12) 

This formula shows the origins of the difficulty in using the estimated 

weight vector of (1.09). The right-hand-side eigenvectors and 

eigenvalues of (1.12) would then be replaced by the corresponding 

estimated values. The fluctuations in the small eigenvalues can then 

cause large errors, because their reciprocals are used in the 

computation of the weight vector. Next assume that ^2 ~ '^S ~ * * " ~ 

Xp and consider the case in which X^ is much larger than the other 

eigenvalues.  Let us consider the limiting weight vector as X.^ -><«>. 

lim w  = -L.  f(s'^v-)v- + (s^v-)v- + . . . + (s^v )v 1   (1.13) 
)^ ^a, ^2 L   2  2      3  3 P  pj 

Neglecting the scale factor I/X2 which does not affect SNR, we can 

express was 

T lim  w       = s - (s v^)v^ (1.14) 

This form of the weight vector can be intrepreted as a null-steerer, 

because it eliminates any component which is proportional to a specific 

vector, in this case v-^ . Liu and Nolte [5] have shown that when the 

noise covariance matrix N is near rank 1 and the component of the 

signal lying in the direction of v-^ is not strong, then the performance 

of the weight vector of (1.14) is about the same as the optimum weight 

vector of (1.04). For the case of unknown, but approximately low-rank 

covariance, motivated by the above considerations, we propose the use 

of the following weight vector: 



w = s - (s'^Vi)vi (1.15) 

where v^ is the principal eigenvector of N. In previous work we 

proposed this weight vector for adaptive detection and evaluated its 

performance through simulation [IS] . Here we study the performance 

analytically in order to explain the results of the simulation. 

Since this estimate is based on the principal eigenvector of N, 

and the principal eigenvectors are relatively unaffected by 

perturbation [10], it should be superior to the conventional 

estimator based on the inversion of the sample covariance matrix. 

Using the null steerer form of the weight vector formula (1.15) 

and an approximation for the principal eigenvector (of the estimated 

covariance matrix N) obtained through one iteration of the power 

method, we will derive an approximate expression for the distribution 

of SNR, formula (1.10) under the conditions of near rank-1 noise and 

large sample size. Below is a brief outline of the steps we will take; 

(1) Transform SNR formula (1.10) into new coordinates based on the 

eigenvectors of N, that is 

P   P 

^  ^ d. d, c. c, 
^ i-      j  k j  k 

SNR =   •' ^ ^ ^  (1.16) 

P    c^   P 

L. K L n       T\ 

W=l        n=l 

with  c^ "^ ^k  * (1.17) 

dj. = vjj.'^^w = w^  ( s - (s'^vj^)vj^ ) (1.18) 

and where \^    and Vj^ are  the eigenvalues and eigenvectors  of N, 



respectively. 

(2) Obtain an approximation for the principal eigenvector of N, v^ , 

by taking one iteration of the power method [11] using Vj^ as the 

starting vector. 

vj^ 2 vj^ = Nvj^ (1.19) 

where v^^ denotes oar approximation to Vi. 

(3) Expand v^^ using the eigenvectors of N as a basis. 

X = W^v^ (1.20) 

and 

v^ = Vx (1.21) 

As3niiptotically, the expansion scale factors in vector x are gaussian as 

the covariance sample size tends toward  infinity. 

(4) Using the expansion (1.21) of Vj^ in place of v^ in formula (1.18), 

substituting (1.18) in (1.16) and approximating the distribution of z 

by a gaussian distribution, then as the noise tends toward rank 1. SNR 

formula (1.16) reduces to a ratio of quadratics that are a function of 

one random variable. 

a  + a  3 + a  P^ 
SNR = — = —— (1.23) 

% "" •'S ^ ^ "6 P 
where  the a^,   k=l,2..6 are  constants and p  is  a  ratio  of  two 

asynptoticaly gaussian and uncorrelated random variables. 

(5) Finally using formula (1.23), the distribution of 0 ( the 

distribution of ratios of gaussians [6] is available in closed form ) , 



and standard univariate random variable transformation theorems, the 

approximate distribution of SNR can be readily obtained. The paper will 

be presented in three main parts; (1) Reduction of SNR assuming near 

rank-1 noise and large sample size, (2) Finding the approximate 

probability density of SNR using the reduced form, and finally, (3) 

experimental results . 



CHAPTER TWO 

I)  Redactioa of SNR assuising near rank 1 noise and large sample size. 

Coordinate Traasformation of SNR 

We start the deriv^ation by re-expressing the signal and weight 

vectors in terms of the eigenvectors of the N, recalling that the 

eigenvectors of N form a basis. This coordinate transformation makes 

the problem more tractable analytically. Performing the coordinate 

transformation we obtain 

* " Z °k ^k (2.00) 
k=l 

P 

w = ^ d^v^ (2.01) 

k=l 

where the v^'s are the eigenvectors of N. Now substitute formulas 

(2.00) and (2.01) and the eigen-decomposition of N into SNR, formula 

(1.10). 

P  P -:. 

}      }    ^i   '^k'^j ^ 
SNR =  •'"^ ^'^   (2.02) 

P    ^2  p 
c 

}   ^  }   \^\ 
m=l       n=l 

where Xz are the eigenvalues of N. The d^ 's are random variables that 

are a function of w. So far no approximations have been used. We simply 

have a different expression for SNR. 

The quadratic forms in formula (2.02) that involve the random 

8 



scale factors d^ can be thought of as linear combinations of the 

products d-d]^. With this in mind, we will proceed by first determining 

the approximate form or distribution of the products d<d^ under the 

asymptotic conditions as X,2'~^ 0 and K-> <» (near rank-1 covariance and 

large sample size) . If we refer back to formula (1.18), it can be seen 

that the sole contribution to the random component of random variable 

d^  is from Vi,  the principal eigenvector of the estimated sample 
•I 

covariance matrix. Therefore, the next step is to determine the 

approximate distribution ( as X-> 0 and K -) <*>) of Vj. From this point 

onward we assume that the noise is gaussian and strongly rank one, 

that is, the noise covariance matrix is approximatly rank 1. To 

simplify the analysis, the principal eigenvalue of N, k-^ is fixed at 1 

without loss in generality. Also, assume that the remaining 

eigenvalues are much smaller than 1 and equal. 

X.j^ = 1 > > ^2 = X.3 = . . . = Xp (2.03) 

The form of the weight vector that we will be using is the null 

steerer (1.15) . 

w = s - (s^Vj)Vj (2,04) 

Approximating the Principal Eigenvector of N 

To estimate v^ , the principal eigenvector of N , we use a three- 

step procedure. First take one iteration of the power method [11] using 

Vj^ (recalling that v^ is the principal eigenvector of N) as the 

starting vector. We then represent the resulting vector, Nv< , in 

terms of the principal eigenvectors of the true covariance matrix N as 

follows 



5    _ V (2.05) N v^ = V X 

in which the columns of V are the corresponding eigenvectors of N. 

Finally, we form onr estimate of Vj , which we denote by v^, by 

normalizing the above vector to unit length 

v^ =  [ 1 / (x^x)*/* ] V X (2.06) 

where x is a pxl vector with elements (xi^} containing the expansion 

scale factors. 

We have shown in a previous paper [10] that if the true 

covariance matrix of the noise, N . is approximatly rank 1 , then even 

for small sample sizes of 16 or 32 observations, Vi lies in nearly the 

same direction as Vj^ ( see Fig. 1). The rate of convergence of the 

power method [11] is proportional to the magnitude of the ratio of the 

principal eigenvalue to the second eigenvalue and since the starting 

vector is the principal eigenvector, Vj^ , of the underlying population 

covariance, it follows that in the near rank 1 case convergence should 

be rapid , implying that v^ should be an accurate estimate of v^ • 

In appendix A we show that the scale factors  (elements of x) are 

asymptotically mnltivariate gaussian and independent as follows: 

xj^ ~ N( 1 . 2/K ) (2.07) 

ijj. ~ N( 0 , X2/K )   for k=2,3...p (2.08) 

Determining the Weight Vector Expansion Coefficents d^. 

Let us now find the expansion coefficients d^  of formula (2.01) . 

To  obtain  the  d.  coefficents,  pre-multiply  (1.15)  by  the  k'th 

10 



eigenvector of N. 

T        T T T 
d^ = v^^ w = v^^ s - ( s-^Vj^ )( Vt^ Vj ) (2.09) 

Note that Ct~^k * •  Then substitute v-i (2.06)  in place of vi in the 

veight vector expression (2.09)  and expand 

\    = «k 

5 c- - 
i=l 

1'? 
1/2 

2 
X. 
J 

1/2 

(2.10) 

k   k 

where 

'^l ^ \ 

x^+  e 

^k y 

I ^+    8 

(2.11) 

y = )  ex. 
^   J  J 

j=2 

(2.12) 

(2.13) 

Before we form the products d-d^ , it is noted that the normalization 

terms in d^ (2.11) are simplified   to a function of x-j^ as  X^ -> 0 

11 



since the variance of the x.'s (for j=2,3...p)  are proportional to Xj. 

This corresponds to the near rank 1 case . 

2 
^1 

(2.14) 

The right-haad side of (2.14) is a good approximation of the 

normalization term for snfficently small ^2 » Replace the normalization 

terms in formula (2,11)  by the approximation (2.14) , 

\ = \ - —i-^^—  -     \ (2.15) 
^1 ^1 

Reduction of the Products d-d^. Under Near Rank-1 and Large Sample 

Condition 

Using the formula (2.15) and assuming that the error due to the 

simplification of the normalization term (2.14) is neglible, we next 

compute d-dj^. 

12 



d. d^ = "i'^- 
^l^j^ ''l^'k^j 'jV 

*1 ^1 
2 

^1 

2 2 
c^x.y 

—               + ^^j^k 
■   + 

^^^l^j^k^ ,   ^jV 
2 2 3 

^1 
'            4 

^1 

(2.16) 

We now determine the behavior of the products d-d^^ (2.16) in the near 

rank-l (X,2~>0) and large sample case (K->«>). This can be done through 

calculation of the expected values and variances of the individual 

random terms in (2.16). From these calculations (see Appendix B) it can 

be seen that the variance and expected value of the i'th random term ( 

for j,k^l,l ) in (2.16) is roughly proportional to the ratio (^2/^)^^ 

where z^ is some integer number. This implies that as kn"^ ^ ^^^ £->«», 

the term(s) ( in formula (2.16) ) having a variance proportional to the 

least power of ^2^^ will contribute the dominating variance to ddi^ 

(2.16). It follows that under these conditions, the random component 

of d<d^ should be accurately approximated by the dominating random term 

in (2.16) in respect to variance. 

The approximate expressions for the products d-d-u are obtained 

using the above methodology (with the exception of d-^ , which can be 

simplified algebraicly).  We have 

For j=l , k=l 

.2 
2 

y 

'^l = °11 =  2— (2.17) 

*1 

for j=l. k^l 

13 



-  Cv y 
d, d, X  D_ 
Ik   Ik (2.18) 

Finally , for j=2,3...p 

k=2,3...p 

d. d„  ~ D., = c. c- 
3     ^ Jk    J  k ^ J_JE JL_J_J. (2.19) 

where the approximating forai of d^dj^ is denoted as Dj]^< It is assumed 

that c^#0 in the above formulas. For sufficently small ^2 and 

reasonable values of K, the Djj^'s should be good approximations to the 

d.djj^'s . We note that formulas (2.17) . (2.18) and (2.19) are 

functions of random variables which are ratios of gaussian random 

variables. 

Simplification of SNR with P.. 

Substituting 5.^ ( formulas (2.17) (2.18) (2.19) ) in place of 

d:d^ in formula (2.02) and through algebraic manipulation of the 

numerator and denominator terms, we can transform SNR (2.02) to the 

desired form, formula (1.23) 

where  P = 

/     c. X. 

j=2 (2.20) 

Start by simplifying the numerator of SNR. From (2.02) the  numerator 

( denoting the numerator as n) is 

14 



j=l       k=l 

(2.21) 

Separate   the   numerator   doable    sxuni&atioii   in   terms   of   d-,      ,    d-,^    (for 

k=2,3...p)   and d^dj.   (for j,k=2,3...p)   . 

= c,   d,   + 2c,      ) c, d,d.   +   > ) d d c  c 
11 lZ.klk       L. Z.nmnm 

(2.22) 

k=2 n=2  m=2 

Through (1) substitution of D-j^ ( formulas (2.17) (2.18) (2.19) ) in 

place of djdj^ in formula (2.22), (2) interchanging the order of 

summation in the last term of n (2.22) and factoring, and finally (3) 

the collection of equivalent terms , the numerator (2.22) can be 

written as 

(2.23) 

n ~ 
L      L      n m 

;i=2 m=2 

2   2 
+   c^  y -4 c, 

U=2 

*1 *1 
The numerator is now in the desired form. We simplify the denominator 

in  a  similar manner.  From  (2.02)  the denominator  (denoting  the 

denominator as d) is 

d = 
\ \ \< 

k=l 

(2.24) 

As stated previously , we assume that 

and 

Xi = 1 

^2 ~ ^3 ~ ^4 ~ 

15 



7. 7. 
Now separate the denominator summation in terms of di  and d^  ( for 

j=2,3...p) and the X2 and I/X.2 scale factors. 

d = Cjd^ + } 

i=2 k=2 

c, d. 
k J 

A. 
k=^2 

2^2 
(2.25) 

+ X 
\  2.2 

2 2 Vj 
J-2 

Then as before, through (1) substitution of D..  ( formulas (2.17) 
J '^ 

(2.18) (2.19) ) in place of djdj. in (2.25), (2) interchanging the order 

of summation in the second and fourth terms of (2.25) and factoring, 

and finally (3) the collection of equivalent terms, the denominator can 

be written as 

d = } c^/X^ 
Lk=2 lj=2 k=2 

2 2 
c c ^ V? I 

k=2 

2 c. 1 
lk=2 

^ Vi 
(2.26) 

Using the simplified forms of the numerator (2.23) and denominator 

(2.26) and forming their ratio , the approximate SNR is 

16 



SNR = 
a + a^P + a^p 

—2 
a + A + a, P + a.p 

(2.27) 

where   a^ =   - 4  c^ 

•2 -   "1 

1 < 
U=2 

P    P 

'1     l']'l 
j=l  k=l 

(2.28) 

(2.29) 

(2.30) 

A = X^c^ 

[X=2 

a3 =    - 2 c^ \ 4 
IX=2 

I <' 
k=2 

^ V? 

(2.31) 

(2.32) 

(2.33) 

Tlie SNR is now a function of one random variable, P . We have obtained 

the form of SNR that we wanted. The density of SNR can now be readily 

be obtained using standard univariate transformation theorems for 

functions of random variables. 

Validity of Approximations 

Although earlier we stated that the reduced formulas for i5 
jk 

(2.17), (2.18),  and (2.19) only hold for c./O for j=l,2...p and Cj.?^0 

17 



for k=l,2...p , our above result (2.27) is valid even when some of the 

c.'s and Cj^^'s are zero or very small. This is because the D^v's 

associatted with the relatively large non-zero c.'s and c^'s contribute 

the dominating variance in formulas (2.23) and (2.26) . By comparison, 

the D.j^'s associated with the zero or very small cj's and c^'s 

contribute generally little variance to (2,23) and (2.26) under the 

near rank-1 and large sample size condition. 

The accuracy of the approximation for SNR (2.27) can be determined 

through the error calculations in Appendix B. 

18 



CHAPTER THREE 

II)  Determining the approximate probability density of SNR asing the 

reduced form. 

In section I it was shown that when the noise covariance matrix 

is almost rank 1 and the sample size is sufficently large , the SNR 

reduces to a fnnction of a single random variable p that is 

approzimatly a ratio of ganssians. Obtaining the density of SNR is now 

a simple two step procedure: 

1) Determine the density of P . 

2) Using  standard univariate  transformation theorems,  obtain  the 

density of SNR with from density of p . 

Determining the Density of p 

Recall from section I that p (2.20) is 

(3.00) 

In appendix A it was shown that the x. 's for reasonable sample size K 

tend toward gaussian, therefore the random variable p can be 

approximated as a ratio of independent gaussian random variables. From 

appendix A  the normal approximations were shown to be: 

x^ ^ N(l, 2/K) (3.01) 

Xfc ^ N(0, X2/K)   for k=2,3,...p (3.02) 

We can therefore consider P as a ratio of two gaussian random variables 
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, X and n as follows: 

P = x/u 

where 

(3.04) (3.05) 

(3.03) 

X  =   >  C. X.        ,        U  =  X, 

■  J=2 

The means and variances of x and a are 

E[x] = X = 0.  E[ii] = i = 1 (3.06) 

ff = X-] 

P 

I'] 
[j=2 

/ K ff = 2/K (3.07) 

Kanter [6] has derived a general form of the probability density for 

the ratio of two ganssian random variables , using the same notation 

as before we have 

PO) = \^\  exp [-^(s^+ l)j / (s?p) + 

[zO) erf( z(p) ) exp( z?p) ) + -^] 

where a = c , b = a 
X      n 

r = correlation coefficient   0 < r < 1 

Y = ab \/(l-r^) 

2 2 
0  = 5"^/   2b 

s(p)   =   (b^p -  rab)/Y 

~ 2 _  _ 
s  =   (b   (x/u)   -  rab)/Y 

z(p)   = Vj»     (   s   s(p)   +  1   )   /   \/(   s?p)   +  1   ) 

1) (3.08) 

(3.09) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 
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Noting that the correlation coefficent is zero ( r=0 ) since x-^ 

and x^ for k=2,3...p are approximatly independent, we can now obtain 

the density of 0 directly through substitution. 

p(p) = [^^ /^X2^)}   [eip -K/4] / [(.l/X^J^)  p^ + 1] 

^  I  2 

y[(2/X p^p +1 ] 
erf 

A / 2 

y[(2/X2r?p+i]. 
exp 

K / 4 

L (2/r) p^ + 1 

(3.16) 

1 

^ 

where  F (3.17) 

P 
^ 2 
/ c. 
^  J 

j=2 
We have obtained the density for p.  At this point we can derive the 

approximate density of SNR. 

Finding the Approximate Density of SNR 

To calculate the approximate density of SNR, we need the use of 

the following random variable transformation theorem [8] 

Theorem A: Given a function g(p). where p is a random variable with 

density p(P) , the density of g(p) can be found using p(p) as 

follows: we solve the equation y=g(p) and denote its real roots by 

P2,P2-—Pji- Clearly, the values of the roots depend on y. Then the 

density of y is given by the formula 

f( y )  = 
p( »! ) p( P^ ) 

n 

g( P^ ) 
(3.18) 

g( P^ ) 
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d g(p) 
where g( P ) = —— (3.19) 

dp     ■ 
and 

(3.20) 

Since g(p) is a ratio of quadratics, it follows that there are two real 

roots. Multiplying both sides of formula (3.20) by the denominator of 

g(p) and collecting terms we have 

ya + yA + ya^P + ya^P = a + a^P + a^P (3.21) 

(ya^ - a^)?^ + (ya^ - a^)p + (a[y-l] + yA) = 0 (3.22) 

Note that formula (3.22) is in the form of a standard quadratic, 

therefore the standard root formula for quadratic equations can now be 

applied to obtain the roots of g(p) . The two roots are 

(a^ - ya3) + [ (ya^-a^)^ - 4{ya^ -  a^) (a[y-l] + yA ) | ^^^ 

^1.2"      ~~      2(ya^ - a^)   -———------—----- 

(3.23) 

Next we determine the derivative of g(p) with respect to p. 

Differentiating we get 

dg(P) 2-1 
 = (a^ + Iti^fi)   (a + A + agP + a^p ) (3.24) 
dp 

2 2-2 
-(a + a^P + a^P ) (a^ + 2a^p) (a + A + a^P + a^P ) 

22 



We can now obtain the approximate density of SNR through direct 

substitution using theorem A formula (3.18), the density of fi (3.16), 

the roots P^ 2 ^^-^^^ ^Q^ the derivative g'(p) (3.24). Denoting the 

density of SNR as f(y) , we get 

f(  y  )  = 
P( Pi ) 

g( Pi ) 

p( h ) 

g( h ) I 
(3.25) 

We recall that ^^ and ^2 ^^^ functions of y. The dependence on y is 

given in formula (3.23). The density f(y) exists over the region where 

Pi and P2 are real . 

Asymptotic Moments of SNR when X2~>0 

The formulas we have derived for the probability density of SNR 

(3.25) are complicated and one would probably have to resort to 

numerical evaluation of the integrals to obtain the first and second 

moments of SNR. However, in the extreme case when '>^2~^' ^^ '^^^ ^^ 

shown that asymptotically as K -><» 

SNR =^ 1  - 
( 1 - cp 

(3.26) 

where z~N(0,l) and "d" implies convergence  in distribution.  Using 

(3.26) we can readily obtain the expected value and variance of SNR. 
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E[ SNR ]  = (3.27) 

Var[ SNR ]  = (3.28) 

Proof: First, it was shown in Appendix A that the numerator and 

denominator of P (3.00) are asymptotically gaussian (see Appendix A for 

detail). Throngh application of a theorem for the asymptotic 

distribution of a function of asymptotically gaussian random vectors 

[Theorem B, pg. 124,14] , it is seen that fi (3.00) itself is 

asymptotically gaussian as K -><= as follows: 

I. ^ 
j=2 

1/2 
(3.29) 

where z~N(0,l/K) .  Next, without loss in generality set the signal 

power to unity, that is 

1 c   =  1 
J 

(3.30) 

The sommation in (3.29) can now be rewritten as a function of c. 
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P ^ [^2 ^ ^ ' '^l ^ ] ^^^ <3-3^^ 

substitute (3.31) in place of p in formula (2.27) and let Xj-^ 0 (note 

that c^  is constrained to be c^  ll in formula (3.31) ). 

~  d        ^ 
SNR -> —  (3.32) 

1 + ( 1 - c^ ) z 

Finally using  (3.32)  and  [ Theorem B,  pg.  124,14]  (asymptotic 

distribution of functions with vanishing first order derivatives) we 

get the asymptotic distribution of SNR as K ->" . 

These formulas should generally give a good estimate -of the 

moments of SNR even for the general case when ^2 is close to zero and 

K is large. Using the formulas for the expected value of SNR for the 

low rank filter weight estimate formula (3.27) and formula (1.11) 

when the filter weights are based on the inversion of the sample 

covariance matrix, we can roughly determine the number of samples 

needed to attain equivalent performance ( in respect to the expected 

values of SNR for both methods ) using the conventional filter weight 

estimate (1.09) compared against the improved rank-1 filter weight 

estimate (1.15) . Denoting the number of samples used to estimate the 

noise covariance in the low rank method as Kj and the sample size for 

the conventional detector as K^,, to attain equivalent performance , Kp 

must be 

Kc = Kj [ ( p - 1 )/( 1 - c;^^ ) ] - 1 (3.33) 
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CHAPTER FOUR 

III) Experimental ResBlts 

Computer simulation results for the distribution of SNR are 

presented for three cases; (1) rank~l interference plus white noise, 

(2) a highly correlated I'st order autoregressive noise component plus 

white noise, and (5) when the interference data being used to estimate 

the interference covariance matrix is contaminated by signal. Further, 

for the rank-1 interference plus white noise case, we show the 

improvement of the low rank filter weight estimates over the 

conventional estimate (based on the inversion of the estimated sample 

covariance matrix). | 

The notation is the same as in sections I and II. The rank-1 

interference plus white noise gaussian noise vector is generated as 

follows : 

. ■ ■     ■ ■ ■ r .  ■ ■   .  "   ' 

.V p- 

'^k = 5  *kj ^j " I (4.00) 

where the scale factors w^j are zero-mean and independent gaussian 

random variables with variance 

Var[ wj.^ ] = 1 + d^        ( (4.01) 

and for j=2,3...p 

Var[ wj^j ] = (T^ I (4.02) 

The vectors r. (j=l,2...p) are the normalized eigenvectors of the 

matrix R. The elements of R are 

r^j =al^"j|    for  i=l,2...p (4.03) 

j=l,2...p 
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The matrix R corresponds to the covariance of a first order AR process 

with correlation a, therefore the noise vector n^ corresponds roughly 

to a snapshot of a I'st order autoregressive noise component plus white 

noise if a >>Yj (for j=2,3...p) where the y. are the eigenvalues of R. 

The interference-to-noise ratio is defined as 

INR = 101ogio( 1 / po^ ) (4.02) 

where p is the covariance matrix order. 

The signal vector we shall use is 

s^  = cos( 2n f (k-1) )   for k=l,2...p (4.03) 

where f is the frequency. 

For our computer simulation. we set a=.9999, p=20, K=25 

(covariance sample size). Three hundred independent trails were 

performed with INR being varied from lOdB to ISdB and the signal 

fre-quency varied from .03 to .06 . The noise covariance matrix was 

estimated using the maximum-liklihood estimate formula (1.08). 

Scattergrams (see Fig, 2) show that the SNR approximation is accurate . 

Next, histograms with confidence bounds were generated using the 

simulated data. The confidence bounds were calculated by noting that 

the frequency count in a particular histogram bin follows the binomial 

distribution and then using the DeHoirve-Laplace theorem [8] to 

estimate the standard deviation of the frequency count, 

ot = V( n fj.jj. ( 1 - fj.^. ) ) (4.04) 

where n is the number of trials and f . is the expected frequency for 

the k'th histogram bin obtained using the derived SNR density (3.25) . 

Figure 3 shows that the experimental data fits the SNR density (3.25) 

well. 

Next we show that the probability density formula (3,25) for SNR 
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can be also used to predict the performance of the detector when the 

interference is a mixture of highly correlated I'st order AR process 

noise and white noise. The noise vector nj^ is generated using (4.00) 

and the same parameters as before except 

Var[ wj^j 3 = Yj + or^   for j=1.2.,.p '  (4.05) 

where y. (j=l,2...p), are the eigenvalues of matrix R, and the value of 

the signal frequency f is .16 . In evaluating the SNR density formula 

(3.25) , we assume that X2 is proportional to a    , that is. 

2 ;.  - .   ■ y  .:      ■ 
o ■-   I "„■•■..,'  . 

^2 " """—2 ' (4.06) 

,.■.,,.■ ,       .1 

or equivalently that Y^=0 for k=2,3...p . Histograms ( see Fig. 4 ) 

show that we get relatively good agreement with the predicted 

distribution . 1 

When the noise data is contaminated by the signal that is being 

received, that is, i 
.' '       \ '-' '■- 

"Tc = J=^k '^ *0^ 

where SQ is a scalar, we can still attain reasonable performance using 

the rank-1 filter weight estimate . This is shown through experimental 

results. The signal-to-white-noise ratio (SWNR) of the contaminating 

signal is defined as 

SWNR = 101ogj^Q( SQ^ / 2a^   ) (4.07) 

Using the same methodology and parameters as in the  first set of 

experiments  (a=.9999,  INR=10dB,  K=25)  and   with  signal  frequency 

f=.047, we generate the signal contaminated noise data using (4.06) and 

SWNR=-15dB . The histogram of the experimental data (see Fig. 5) and 
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statistics indicate even with signal contamination, we can still attain 

relatively high values of SNR. 

By evaluating the formala for the expected value of SNR (1.11) and 

the density formulas derived by Reed, Mallet, Brennan [1,formula 17] 

for the conventional adaptive detector based on the inverse of the 

sample covariance matrix and evaluating the density of our improved 

detector using the SNR density formula (3.25) , it can be seen that for 

even small sample sizes (see Fig. 6,7), the filter weights based on the 

principal eigenvector yield superior results in this example. 

Below, the approximate formulas that were derived in Chapter 3 for 

the expected value of SNR (3.27) and variance (3.28) are evaluated and 

compared against the computer simulation results obtained earlier. It 

can be seen from the below results, that formulas (3.27) and (3.28) are 

accurate. 

a) mean and standard deviation of SNR calculated using the approximate 

formulas (3.27) and (3,28) when INR=10 dB, a=.9999, K=25 

f=.03 

f=.04 

f=.05 

f=.06 

E[SNR]=.962 . Dev[SNR]=.0542 (4.08) 

E[SNR]=.965 , Dev[SNR]=.0500 (4.09) 

E[SNR]=.960 , Dev[SNR]=.0566 (4.10) 

E[SNR]=.963 , Dev[SNR]=.0524 (4.11) 

b) mean and standard deviation of SNR obtained through computer 

simulation based  on  300  independent  trials  and using  the  same 

parameters as before 

f=.03 : E[SNR]=.965  , Dev[SNR]=.0442 (4.12) 

f=.04 : E[SNR]=,965  . Dev[SNR]=.0419 (4.13) 
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f=.05   :   E[SNR]=.967     .   Dev[SNR]=.0438 

f=.06   :   E[SNR]=.967     ,   Dev[SNR]=.0398 

(4.14) 

(4.15) 
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CHAPTER FIVE 

Conclnsion 

The formulas we have derived are useful over a reasonable range 

of interference-to-noise ratios and signal types. For near rank-1 

noise, the null steerer generally provides good performance over 

conventional detectors based on sample covariance matrix inversion. 

Further, these results should give insight into determining optimal 

adaptive detectors and their performance for higher rank near singular 

noise. 

The reader may question why we did not use the known asymptotic 

distribution of the principal eigenvector of a Wishart matrix [13] in 

deriving the SNR probability density. Through experimentation , we have 

determined that the power method approximation for the principal 

eigenvector of the estimated sample covariance matrix is much more 

accurate for small sample sizes than the extreme asymptotic 

distribution. 
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APPEhJDIX A 

Determining the Form and Distribntion of i. 

We will compute the expansion scale factors which are defined in 

formula (2.05) and show that the x, are asymptoticaly gaussian. Recall 

that the eigen-decomposition of N is 

N = V A V^ (al.O) 

Neglecting its length . the principal eigenvector of N is approximated 

by Nvj and it can be represented using the matrix V of column vectors 

which are the eigenvectors of the true covariance matrix N as follows: 

N vj = V I ' (al.l) 

in which x is the pxl column vector of the scale factors. 

X = [ xj^ X2 . . . . X  ]^ (al.2) 

Then , I      ^ 

X = V^ N v^ I (al.3) 

Next, vi can be rewritten as 

vi = V b (al.4) 

where b=[100...0]^ . Note that the dimensions of b are pxl 

. Now substitute formula (al.4) into (al.3) 

X = V'^ N V b (al.5) 
I. ■ 

To obtain the distribution of x we need to first find the distribution 

of V NV .  Use a theorem of Wishart matrices (from [7]), recalling that 

N is Wishart [13] . For additional discussion and use of the Wishart 

distribution of estimated covariance matrices  see  (Anderson  [7]), 

(Goodman [16]),  (Reed, Mallet, Brennan [1]) and (Capon and Goodman 

[17]). 

Theorem B:    If N ~ Wp( N,K ) , then v"^ N V ~ Wp( V*^ N V , K)  . 

In this notation, Y~W (X,K) means that the pxp matrix Y is Wishart 
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distributed with expected value X and K degrees of freedom. 

Therefore 

V'^ N V ~ Wp( V^ N V , K) (al.6) 

The distribution parameters of (al.6) can be simplified by substituting 

the eigen-decomposition of N in place of N. 

Then 

V*^ N V ~ Wp( A . K ) (al.7) 

where A is the diagonal matrix of eigenvalues of N. We now have the 

distribution of V NV . Anderson [7] has shown that the sample 

covariance matrix is asymptotically gaussian distributed as the sample 

size increases. The equivalent can be stated for Wishart matrices as K 

-><» . The theorem from Anderson [7] is re-stated below for the case of 

Wishart matrices. 

Theorem C: If | is Wishart W ( 1 , K ) . then the asymptotic 

distribution of 

X =   \     ^    - ^ (al.8) 

is normal with mean 0 and covariances 

E[ Xij x^i ]  = a^j. o.^     + Oil ajj. (al.9) 

where x^. is the i.j'th element of matrix X (al.8) and a-, is the 

i,j'th covariance from I . 

Let 

1    =  V^ N V (a2.0) 

then 

X  =  I b (a2.1) 
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It can now be seen tbat z is simply the first column of >. By 
■■-.     '"■■ ■•■ i: 

application of theorem C directly to formula (al,5) and using formula 

(al.9), it can be easily shown that x is asymtotically multivariate 

gaussian with mean 

E[ x''^ ]  = i^ =  [ 1 0 0 . , . 0 ]T (a2.2) 

and covariance matrix 

(a2.3) 

E[ (x-x)(x-i)^] 

2/K 
0 

0 

0 

0 
X„/K 
0 

0 
0 

0 
0 

X^/K 

X^/K 

of dimension pxp and where K is the number of vectors used in 

estimating the covariance matrix N. Note that the elements of x are 

asymptoticaly uncorrelated, therefore independent. Further , for 

reasonable sample size we can consider the distribution of x to be 

approximatly multivariate gaussian with the above parameters. 

APPENDIX B ' 

Means and Variances of D-. and the Approximation Errors 

In appendix B we will first compute the error of approximating the 

products d-djj ( formula (2.16) ) by the corresponding asymptotic 

results D.j^ ( formulas (2,17) (2.18) (2.19) ) and then the respective 

means and variances of D-v. and the approximation errors for the near 

rank 1 covariance matrix and large sample case. The approximation error 

A-t is given by . ', 
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^k = °jk - ^j \ ^""^'^^ 

Through substitution of formulas (2.16),  (2.17).  (2.18), and (2.19) 

into formula (bl.O) we get (it is noted that Aj^^"^ ): 

For j=l ,k=2,3...p the error is 

-c^ X  y X  y 

*1 ^ 

and finally for j=2,3,...p 

k=2,3,...p 

2 
c. X  y        "k ^i   ^                    ''l *i ^k 

A., =  i-^—    ^     ^ '-^ (bl.3) 

^1 *1 *1 

2  c, X. X  y        X. X, y 
_  1  J  k -^  _     J  k -^ 

3 4 
^1 ^1 

We will now calculate the mean and variance of the approximations D., 

(formulas (2.17) (2.18) (2.19) ) and the approximation error terms A-, 

(formulas (bl.l) (bl.2) (bl.3) ) . Since D-. 's and A,,'* are sums of 

ratios of uncorrelated random variables, we need the use of the 

following formulas for eatimating the mean and variance of ratios of 

two random variables. Given uncorrelated random variables u and x, then 
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ETaJ 

■■■■■■,■■: ■ I . 

These approximations (bl.4) and (bl.5) are generaly accurate when 

(bl.6) i 

E[ u ] ft 0  ,  E[ u ] >> <r (bl«7) 
u 

a a I    ■ ■    ■    ■  ■ 
and 2:— << — (bl.8) 

E[ u ] ,   E[ I ] 
where o^  and CT^  are the variances of x and u respectively. Note that 

although the moments of these ratios might not exist in the strict 

theoritical sense, these estimates  (formulas  (bl.4) and ( bl.5)  ) 

should give an good indication where the bulk of the probability 

density mass of the ratio x/u lies (using the Tchebycheff inequality 

[8]). Further, note that the above conditions  (bl.6),  (bl.7),  and 

(bl.8) are essentially satisfied in the case that we are considering, 

near rank 1 cov&riance and large sample size . Using formulas (bl.4) 

and (bl.5) and the gaussian approximations for the x. 's as derived in 

appendix A we get 

Note that throughout the mean and variance results we shall use 
■ I 

i    -  ■■  ■    , ■  ■ ■ 

P I  '   ■■-,-; 

r = ^    c^ ^ (bi.9) 

n=2 , 

We now calculate the expected value and variance of the approximations 

I ■ ■ "  ■ 
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D.^ ( formalas (2.17). (2.18) and (2.19) ) and the error terms A.j^ 

(formulas (bl.l) and (bl.3) ) using formulas (bl.4) and (bl.5) . 

1) D^i 

(b2.0) ,  , (b2.1) 

E[ D,,] = 
X^ r 2 X 2p2 

11^ =      .    Var[ p  ] ^  
K [ 1 + 2/K ] ^^ K  [ 1 + 2/K I 

2) 5^^ :  k=2,3...p 

E[ Dj^^]  s 0 (b2.2) 

2 \  2 
k 2 =n 

Var[ D^j,]  =  2z2  (1,2.3) 

3) Djj :  j=2.3...p 

E[ DjJ  = cj (b2.4) 

2 2 
4 3L  C  C 

Var[ D  ]  =  L_i_J  (1,2.5) 
JJ g- 

0 Dj^ :   j?tk for j=2,3...p 

k=2,3...p 
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E[ D..]  = 0. c. 

Var[ D.. ]  s  

(b2.6) 

(b2.7) 

The mean and variance of the error A.^ is 

1) Aj^ :  k=2,3,..p 

E[A^^]  = 
"^2 °1 ''k 

K [ 1 + 2/K ] 
(b2.8) 

The variance of the terms of A^^ are 

Var 
*=! ^k y 

,22,2   _ , 
^ S ^=1 ^ °k ^ ^ ^ 

K^ [ 1 + 2/K ]^ 
(b2.9) 

Var 
^k y 

x5 ( 12 c? r + 3 r^ ) 

K^ [ 1 + 6/K ]^ 
(bS.O) 

2) Ajj :  j=2,3...p 

X  cj - 2 X  c^    X  ( 2 cj + r ) 

^^ ^j ^ = ! A .,,!,  - !2    — K [ 1 + 2/K ]      K + 12 K [ 1 + 1/K ] 
(b3.1) 

The variance of the terms A-■ are 
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Var 

2     2 
c      X. 

1     J 
-,,2    4 
2 ^2^1 

K^   [  1 + 2/K ]^ 
(b3.2) 

Var 
2     c.   X.   y 

J     J 
4 X? c^   (  c^ +  r ) 
 L_J i  

K^   [   1 +  2/K  ] 
(b3.3) 

Var 
. .^ A kl   (  12 c^ + 3  r ) 

2 J  

K^   [  1 + 6/K ]^ 
(b3.4) 

Var 

2    2 [ (24cf + D   (72c^  + 9r)  -   (2c 

^ 

i J. i-'M 
K 1  +   (12/K)   (   1  +  1/K   ) 

<b3.5) 

3)   Ajjj,   :     j?tk     for  j=2,3...p 

k=2,3...p 

-2 k     c.   c, 
E[  A.,]     =     ^     •■     ^ + 

2  X.-   c.   c, 
2     J     k 

jk' K   [   1  +  2/K  ] K    +  12 K   [   1  +  1/K  ] 
(b3.6) 

The  variance  of   the   terms  of A-^ are 

Var 
<=i   *•   *i. ^2  *=1 

K^   [   1  + 2/K  ]^ 
(b3.7) 
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Var T!     1 " 

Var ''k'j y 

Xl .]iol.V) 

Var ' 'j 't y 

K^  [  1  + 2/K ]^ 

Xj c^ ! c^ ? r ) 

K^   [  1 + 2/K ]^ 

4 X^     [ 2   (  cS c^  ) -1 

(b3.8) 

(3.9) 

(b4.0) 
r [ 1 + 6/K ] 

Var 'j 'ky 
.4 r   2 2 

m0        ^—■—•^i^^^p^^^fc 

M 
^ + ( c^ + cj > P + 

K   1 + (12/K) [ 1 + 1/K ] T (b4.1) 
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Histograms based on  500 independent  trials  of the 
magnitude  of the  angular perturbation  of the  principle 
eigenvector of FT .  N (1.08)  was  generated with  K 
.independent  realizations  from a first-order autoregressive 
process. 

n(j.)  =  .9n(j-l)  +  w(j) for j=l,2...10 
k k       k 

where  w(j)|, are  independent,  zero-mean , unit  variance gauss inn 
random  variables. 

The  magnitude  of J^he angle between  the  principle 
eigenvector of E( N )  and N    is 

-I 
(^  =  ( 180/n ) cos 

^1   ^1 



Fig. 2)   SCATTERGRAMS OF TRUE SNR FORMULA (1.10)  VS. 
APPROXIMATE  SNR  FORMULA (1.23]  BASED ON  500 
INDEPENDENT TRIALS.  THE  EXPERIMENTAL  PAR.AMRTERS 
ARE: 

a=.9999 ,  p=20  ( COVARIANCE MATRIX ORDER) 
. K=25  ( COVARIANCE SAMPLE SIZE ) 
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Fig. 51  HISTOGR.-'uVlS  OF SNR  FORMULA (1.10)  BASED ON  300   ' 
liN'DEPENDHNT TRIALS .  BOUNDS  ARE  PLACED ON THE EXPERIMENTAL 
OBTAIXED  BIN  FREQUENCIES  ,  ASSU.MING  TOAT SNR  HAS  THE 

DERIVED  PROBABILITY  DENSITY (3.25)  AND THEN CALCULATING 
■niE  EXPECTED  VALUE  AND  ESTIMATED  STANDARD  DEVIATION  OF  Til 
BIN  FREQUENCY.  HISTOGR.^iMS  ARE  GENERATED  USING  30  EQUALLY 
SPACED  BINS.  THE  EXPERIMENTAL PARAMETERS  ARE: 
a=.9999 , 0=20     ( COVARIANCE MATRIX ORDER )  .   . 
K=25  [ COVARIANCE  SAMPLE  SIZE ) ■; 
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•ig, 4)   lilSTOGRAiMS  OF  SNR  FOI^IULA (1.10)  BASED ON  300 
INUlfPENDENT TRIALS  FOR THE CASE WHEN THE NOISE 
CONSISTS  OF A  I'st  ORDER  AUTOREGRESSIVE  COMPONENT 
PLUS  A WHITE NOISE COMPONENT.  BOUNDS ARE  PLACED ON 
THE  EXPERIMENTALY  OBTAINED  BIN  FREQUHNCTES,  ASSUMING 
THAT SNR HAS  THE  DERIVED SNR  DENSITY (3.25)  AND 
THEN CALCULATING THE  EXPECTED VALUE AND ESTIMATED 
STANDARD  DEVIATION  OF THE  BIN  FREQUENCY.  HISTOGRAMS 
ARE GENERATED  USING  30  EQUALLY  SPACED  BINS.  THE 
EXPERIMENTAL  PAR.\METERS  ARE: 

:Y=.9999 ,  p=20  ( COVARIANCE  MATRIX ORDER ) 
K=2S  ( COVARIANCE  SAMPLE  SIZE ) 



< 
CQ 
o 

OS 
2 

< -< 

O O) 
a. CJJ 

Q   LU 

o 
CQ   Z 

o 

m 
Q 
IXJ 

Q  < 

X 

< 

a: 

Ci 
O 

O     ►-! 
U  CQ 

Q 
UJ 
H 
U 
aj 
Q. -J 
X < 
UJ    l-H 

UJ O 

CQ 

:= UJ 
o X 
ca t— 
< 
z z 
O 1-1 
>—   CO 

> u z 
UJ z o 
Q  UJ 1—I 

Qi UJ aa 
< ci t— a u_ ^ 
Z r- 
< Z c/1 
^     h-H I—( 

cn CQ o 

UJ 
CO 

UJ 
-o 

II 
4-4 

.. UJ 
>- a: u < z 
UJ 

cz 
UJ cr; 

-3   O 
< z 
U  CO 
HH   U 
CO   H-l 

H 
c/5 

•» t—I 

H aa < 
CO 

1^ 

< 
I—I 
> 
UJ 

to   Q 

•   Q 
□i 

II    < 
Q 

ci: UJ < < 
-    Z  I  UJ  H 
'-I I—I H S CO 

I/) 

O o 
o •r-t 

U- 



Fig. 5)  11IST0GR,VMS  OF SNR  FORMULA (1.10)  BASED ON  500 
INDEPFiNDENT TRIALS  FOR THE CASE IVHEN THE NOISE  BEING 
USED  TO  ESTIMATE  THE  COVARIANCE  MATRIX  IS  CONTAMINATED 
BY  SIGNAL.  BOUNDS  ARE  PLACED  ON  THE  EXPERIMENTALY 
OBTAINED  BIN  FREQUENCIES,  ASSUMING  THAT SNR HAS  TOE 
DERIVED  DENSITY (3.:rO  AND  THEN  CALCULATING  THE  EXPECTED 
VALUL, AND  ESTIMATED  STANDARD  DEVIATION OF  THE  BIN 
FREQUENCY.  HISTOGRAM  IS  GENERATED  USING  30  EQUALLY  SPACED 
'BIN'S.  THE  EXPERIMENTAL PARAMETERS  ARE: 

.-.= .9999 , 0=20  ( COVARIANCE MA^TRIX ORDER ) 
K=:5  { COVARIANCE  SAMPLE  SIZE ) 
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